Section 1.8

Sum, Difference, Product and Quotient of Functions

Let f and g be two functions with overlapping domains, then for all x common to both domains, the *sum, difference, product,* and *quotient* of f and g are defined as follows.

- a) Sum: (f + g)(x) = f(x) + g(x)
- b) Difference: (f g)(x) = f(x) g(x)
- c) Product: $(fg)(x) = f(x) \cdot g(x)$
- d) Quotient: $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, \quad g(x) \neq 0$

Composition of Two Functions

The composition of the function f with the function g is

$$(f \circ g)(x) = f(g(x))$$

The domain of $(f \circ g)$ is the set of all x in the domain of g such that g(x) is in the domain of f.

Problem 1. In the following exercises, find (f + g)(x), (f - g)(x), (fg)(x), (f/g)(x) and (f/g)(4). What is the domain of f/g?

a) f(x) = 2x - 5, g(x) = 2 - x

b)
$$f(x) = 2x^2 - 1$$
, $g(x) = x + 1$

c)
$$f(x) = \sqrt{x^2 - 4}, g(x) = \frac{x^2}{x^2 + 1}$$

Problem 2. In the following exercises, find $f \circ g$ and $g \circ f$. Find the domain of each function and each composite function.

a)
$$f(x) = \sqrt[3]{x-5}, g(x) = x^3 + 1$$

b)
$$f(x) = |x - 4|, g(x) = 3 - x$$

c)
$$f(x) = \frac{2}{x^2 - 4}, g(x) = x + 4$$

Problem 3. Find two functions f and g such that $(f \circ g)(x) = h(x)$.

a)
$$h(x) = (4 - x)^4$$

b)
$$h(x) = \sqrt{4-x}$$

c)
$$h(x) = \frac{2}{(3x+1)^2}$$

Problem 4. Use the graph of *f* and *g* to evaluate (f + g)(3), (f/g)(2), $(f \circ g)(1)$, $(f \circ g)(3)$, $(f \circ f)(3)$.

Problem 5. A square concrete foundation is prepared as a base for a cylindrical tank.

- a) Write the radius *r* of the tank as a function of the length *x* of the sides of the square.
- b) Write the area of the circular base of the tank as a function of the radius *r*.
- c) Find and interpret $(A \circ r)(x)$.

Homework: Read section 1.8, do #3, 9, 13, 19, 21, 33, 37, 45, 49 (the quiz for this section will be taken from these problems)