Section 1.8

Sum, Difference, Product and Quotient of Functions

Let f and g be two functions with overlapping domains, then for all x common to both domains, the sum, difference, product, and quotient of f and g are defined as follows.
a) Sum: $\quad(f+g)(x)=f(x)+g(x)$
b) Difference: $\quad(f-g)(x)=f(x)-g(x)$
c) Product: $\quad(f g)(x)=f(x) \cdot g(x)$
d) Quotient: $\quad\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}, \quad g(x) \neq 0$

Composition of Two Functions

The composition of the function f with the function g is

$$
(f \circ g)(x)=f(g(x))
$$

The domain of $(f \circ g)$ is the set of all x in the domain of g such that $g(x)$ is in the domain of f.

Problem 1. In the following exercises, find $(f+g)(x),(f-g)(x),(f g)(x),(f / g)(x)$ and $(f / g)(4)$. What is the domain of f / g ?
a) $f(x)=2 x-5, g(x)=2-x$
b) $f(x)=2 x^{2}-1, g(x)=x+1$
c) $f(x)=\sqrt{x^{2}-4}, g(x)=\frac{x^{2}}{x^{2}+1}$

Problem 2. In the following exercises, find $f \circ g$ and $g \circ f$. Find the domain of each function and each composite function.
a) $f(x)=\sqrt[3]{x-5}, g(x)=x^{3}+1$
b) $f(x)=|x-4|, g(x)=3-x$
c) $f(x)=\frac{2}{x^{2}-4}, g(x)=x+4$

Problem 3. Find two functions f and g such that $(f \circ g)(x)=h(x)$.
a) $h(x)=(4-x)^{4}$
b) $h(x)=\sqrt{4-x}$
c) $h(x)=\frac{2}{(3 x+1)^{2}}$

Problem 4. Use the graph of f and g to evaluate $(f+g)(3),(f / g)(2),(f \circ g)(1),(f \circ g)(3)$, $(f \circ f)(3)$.

Problem 5. A square concrete foundation is prepared as a base for a cylindrical tank.
a) Write the radius r of the tank as a function of the length x of the sides of the square.
b) Write the area of the circular base of the tank as a function of the radius r.
c) Find and interpret $(A \circ r)(x)$.

Homework: Read section 1.8 , do \#3, $9,13,19,21,33,37,45,49$ (the quiz for this section will be taken from these problems)

